
Land Surface Model influence on the simulated climatologies of
temperature and precipitation extremes in the WRF v.3.9 model
over North America
Almudena García-García1, 2, Francisco José Cuesta-Valero1, 2, Hugo Beltrami1, Fidel González-Rouco3,
Elena García-Bustamante4, and Joel Finnis5

1Climate & Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, Nova Scotia, Canada.
2 Environmental Sciences Program, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada.
3Physics of the Earth and Astrophysics Department, IGEO (UCM-CSIC), Universidad Complutense de Madrid, Spain.
4Research Center for Energy, Environment and Technology (CIEMAT), Madrid, Spain.
5Department of Geography, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada.

Correspondence: Hugo Beltrami (hugo@stfx.ca)

Abstract. The representation and projection of extreme temperature and precipitation events in regional and global climate

models are of major importance for the study of climate change impacts. However, state-of-the-art global and regional climate

model simulations yield a broad inter-model range of intensity, duration and frequency of these extremes. Here, we present a

modeling experiment using the Weather Research and Forecasting (WRF) model to determine the influence of the land surface

model (LSM) component on uncertainties associated with extreme events. First, we evaluate land-atmosphere interactions5

within four simulations performed by the WRF model using three different LSMs from 1980 to 2012 over North America.

Results show LSM-dependent differences at regional scales in the frequency of occurrence of events when surface conditions

are altered by atmospheric forcing or land processes. The inter-model range of extreme statistics across the WRF simulations

is large, particularly for indices related to the intensity and duration of temperature and precipitation extremes. Areas showing

large uncertainty in WRF simulated extreme events are also identified in a model ensemble from three different Regional10

Climate Model (RCM) simulations participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX)

project, revealing the implications of these results for other model ensembles. This study illustrates the importance of the

LSM choice in climate simulations, supporting the development of new modeling studies using different LSM components

to understand inter-model differences in simulating temperature and precipitation extreme events, which in turn will help to

reduce uncertainties in climate model projections.15
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1 Introduction

General Circulation Models (GCMs) and Regional Climate Models (RCMs) are currently the most useful tools for the study of

processes affecting the frequency, duration and intensity of extreme temperature and precipitation events, as well as projecting

their evolution under different emission scenarios at global, regional and local scales. Both observational data and climate20

model simulations confirm all of these statistics respond to climate change (Seneviratne et al., 2012; Orlowsky and Seneviratne,

2012; Jeong et al., 2016). However, state-of-the-art global and regional climate models differ substantially in their interpretation

of the climatology and response to warming of various indices of temperature and precipitation extremes (Sillmann et al.,

2013a, b). Climate information provided by models is currently employed by public and private institutions dedicated to the

evaluation and management of risks from extreme events and associated disasters (IPCC, 2013; Arneth, 2019). It is, therefore,25

essential that climate models represent extreme events and their evolution as realistically as possible to aid in the design of

appropriate policies to mitigate climate change and build resilience. In this study, we evaluated the representation of a set of

extreme indices, previously included in international reports such as IPCC (2013) and Seneviratne et al. (2012), as simulated

by the Weather Research and Forecasting (WRF) model with different land surface model (LSM) components.

Land-atmosphere interactions have been identified as a key factor in the simulation of extreme events (e.g. Lorenz et al.,30

2016; Vogel et al., 2017). Soil conditions affect and are affected by near-surface atmospheric phenomena, through energy and

water exchanges at the ground surface. For example, previous observational studies have shown the impact of soil moisture

deficits on hot extreme temperatures through changes in evapotranspiration over southeastern and western Europe and Russia

(Hirschi et al., 2011; Miralles et al., 2012; Hauser et al., 2016). Additionally, soil moisture regimes have been found to alter the

energy and water exchanges at the surface, influencing inter-annual summer temperature variability in central parts of North35

America (Donat et al., 2016), and precipitation events in western North America (Diro et al., 2014). Land-Atmosphere interac-

tions, and consequently near-surface conditions, are influenced by vegetation and snow covers (Stieglitz and Smerdon, 2007;

Diro et al., 2018). For example, Diro et al. (2018) showed that interactions between snow cover and atmospheric processes

influence extreme events, increasing the frequency of cold events over western North America and affecting the variability in

warm events over northeast Canada and the Rocky mountains.40

Metrics built on the representation of land-atmosphere interactions have been employed as a basis for evaluating extreme

temperature and precipitation events in climate model simulations (Knist et al., 2016; Davin et al., 2016; Lorenz et al., 2016;

Sippel et al., 2017; Gevaert et al., 2018; García-García et al., 2019). For example, Lorenz et al. (2016) evaluated outputs

from six GCMs participating in the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison

Project, Phase 5 (GLACE-CMIP5) and concluded that ranges of intensity, frequency and duration of extreme events among45

climate projections are strongly related to inter-model differences in the representation land-atmosphere interactions. Gevaert

et al. (2018) evaluated the representation of land-atmosphere interactions within a set of off-line LSM simulations, finding

similar spatial patterns of soil moisture-temperature coupling among LSM simulations, but large variability in the degree

and local patterns of land-atmosphere coupling. García-García et al. (2019) employed a simple metric derived from soil and

air temperatures to evaluate outputs from the CMIP5 models and the North American Regional Reanalysis (NARR) against50
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observations over North America, suggesting a strong dependency of the simulated land-atmosphere interactions on the LSM

component employed.

In contrast with the variety of LSM components employed in the new generation of GCMs, reanalyses use simplified versions

of LSM components, typically included as part of the atmospheric model component. For example, all reanalysis products

produced by the European Centre for Medium-range Weather Forecasts (ECMWF) model (CERA-20C, ERA-15, ERA20C,55

ERA-Interim and ERA-40 products) employed the same LSM component included in the code of the ECMWF atmospheric

model. The two Modern-Era Retrospective analysis for Research and Applications (MERRA) global products employed the

GEOS-5 Catchment land surface model (Reichle et al., 2011). The Japanese Reanalysis (JRA) products employed a modified

version of the Simple Biosphere (SiB) LSM (Onogi et al., 2007), while most of National Centers for Environmental Prediction

(NCEP) and National Center for Atmospheric Research (NCAR) products employed the NOAH LSM (Tewari et al., 2004).60

The complexity and variety of these LSM components are limited in order to reduce computational costs, affecting the quality

of the represented land surface processes. This has already been noted by the scientific community, and some have attempted to

address the issue by incorporating updated versions of LSMs in new land reanalysis products though offline LSM simulations

forced by observational data products (LDAS, MERRA-land, ERA-Iterim/Land, Rodell et al., 2004; Reichle et al., 2011;

Balsamo et al., 2015). Although these new products can be useful for LSM development and provide data about the soil states65

and fluxes (Balsamo et al., 2015), the offline character of the new land products inhibits the representation of land-atmosphere

feedbacks.

Here, we perform a set of modeling experiments to evaluate for the first time the influence of the LSM component on the

simulation of key extreme indices and land-atmosphere interactions within land-atmosphere coupled climate simulations at

continental scales. For this purpose, four regional simulations are performed over North America (1979-2012) using the WRF70

model including three different LSM components widely employed in model simulations and reanalysis products, as described

in Section 2. The methodology for the analysis of land-atmosphere interactions and the representation of extreme events is

described in Section 3. Section 4 presents the evaluation of land-atmosphere interactions, the analysis of LSM differences

in the representation of temperature and precipitation extremes, and the comparison between the WRF simulations and three

Coordinated Regional Climate Downscaling Experiment (CORDEX) Evaluation simulations. A discussion about previous75

results and the main conclusions and implications of this study are presented in Section 5 and 6, respectively.

2 Description of the modeling experiment

We performed four regional simulations over North America (NA) using the version 3.9 of the Advanced Research WRF

(ARW-WRF) model (Michalakes et al., 2001) including three different land surface models: the NOAH LSM (NOAH, Tewari

et al., 2004), the NOAH LSM with multiparameterizations options (NOAH-MP, Niu et al., 2011), and the Community Land80

Model version 4 LSM (CLM4, Oleson et al., 2010). Vegetation cover was prescribed in these three simulations (NOAH,

NOAH-MP and CLM4); an additional simulation was conducted with dynamic vegetation cover in the NOAH-MP LSM

(NOAH-MP-DV), allowing for the evaluation of the influence of dynamic vegetation on extremes (NOAH-MP-DV). The use
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Table 1. Characteristics of the LSM components employed for the WRF simulations performed in this analysis.

LSM Vegetation Types Vegetation Mode Soil Layers Soil Depth Snow Reference

NOAH Dominant vegetation type in one grid cell Prescribed 4 2 m Single Layer Tewari et al. (2004)

NOAH-MP Dominant vegetation type in one grid cell Prescribed 4 2 m Up to 3 Layers Niu et al. (2011)

NOAH-MP-DV Dominant vegetation type in one grid cell Dynamic 4 2 m Up to 3 Layers Niu et al. (2011)

CLM4 Up to 10 vegetation types in one grid cell Prescribed 10 4.32 m Up to 5 Layers Oleson et al. (2010)

of different LSM components in a RCM permits the study of the influence of surface and soil processes on the simulated

climate system in contrast to LSM offline simulations (Laguë et al., 2019).85

The LSM components employed have been previously included in climate model studies or in reanalysis products. The

CLM4 LSM component has been coupled to several GCMs participating in the CMIP5 project (Collins et al., 2006; Vertenstein

et al., 2012). The NOAH LSM has been extensively used for reanalysis products, as well as for RCM simulations as those

participating in the CORDEX project (Mesinger et al., 2006; Katragkou et al., 2015). The NOAH-MP LSM has been selected

for current studies using WRF (e.g. Liu et al., 2017). The NOAH LSM is a rather basic LSM developed by the National Center90

for Atmospheric Research (NCAR) and the National Centers for Environmental Prediction (NCEP), based on the Oregon State

University (OSU) LSM. This LSM component describes soils using 4 layers with thickness 10, 30, 60 and 100 cm, using a

zero-flux bottom boundary condition at a depth of 2 m. The NOAH LSM estimates soil moisture and temperature at the node

of each soil layer, taking into account snow cover, canopy moisture, and soil ice. The NOAH-MP LSM is based on the NOAH

LSM, introducing relevant improvements, such as a dynamic vegetation option; a new separated vegetation canopy cover that95

improves the computation of energy, water and carbon fluxes at the surface; a separate scheme for computing energy fluxes

over vegetated surfaces and bare soils; a new 3-layer snow model; a more permeable frozen soil; and an improved description

of runoff and soil moisture. Although the NOAH-MP LSM is the updated version of the NOAH LSM and has been shown to

improve the simulation of surface processes in comparison to the NOAH LSM (e.g. Niu et al., 2011; Yang et al., 2011), the

NOAH-MP LSM has not yet been implemented in any reanalysis product. The CLM4 represents one of the most advanced100

LSM components, incorporating a detailed description of biogeophysics, hydrology and biogeochemistry. The CLM4 classifies

vegetation cover according to 4 different plant functional types, considering the physiology and structure of different plants.

The soil vertical structure is divided into a layer for the vegetation canopy, 5 layers for snow cover, and 10 soil layers, placing

the zero-flux bottom boundary condition at approximately 4.32 m. The main characteristics of the employed LSM components

are summarized in Table 1.105

Beyond the structural differences among LSM components, the remaining options and parameters are identical for the four

WRF simulations. Boundary conditions for the WRF experiments are provided by the North American Regional Reanalysis

(NARR) product, which is formed by the NCEP Eta atmospheric model, the NOAH LSM and the Regional Data Assimilation

System (RDAS); (Mesinger et al., 2006). NARR data are provided with a 32 km grid and three-hourly temporal resolution,

available at the National Center for Environmental Information (NOAA) archive. The domain set for the WRF simulations110
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has 50 km horizontal resolution and 27 atmospheric levels, covering North America in a Lambert projection. The land use

categories employed for the four simulations are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS,

Barlage et al., 2005). The four WRF simulations start in January 1st 1979, which is the first year of the NARR product, and end

in December 31st 2012, using a time-step of 300 seconds for the model integrations. We use the first year of each simulation

as spin-up and the other 33 years for the analysis. The employed physics parameterizations include the WSM 6-class graupel115

scheme for the microphysics (Hong and Lim, 2006), the Grell-Freitas ensemble scheme for cumulus description (Grell and

Freitas, 2014), the Yonsei University scheme as planetary boundary layer scheme (YSU, Hong et al., 2006), the revised MM5

monin-Obukhov scheme for the surface layer (Jiménez et al., 2012), and the CAM scheme for the integration of radiation

physics each 20 min intervals (Collins et al., 2004).

The gap in resolution from the employed boundary conditions (32 km) to the final simulations (50 km) can be counter-120

intuitive for a RCM experiment ; indeed. The rationale for this decrease in resolution is that this set of simulations constitutes

an ensemble of WRF sensitivity experiments to using different LSM components. The computational resources saved with this

coarse resolution allow us to perform simulations long enough for the evaluation of land-atmosphere interactions and extreme

events at climatological scales and yet similar horizontal resolution and domain to those employed in the North American

component of the CORDEX project (Giorgi and Gutowski Jr., 2015) can be attained. Additionally, we do not apply any nudging125

technique, ensuring that the RCM evolves freely according to each LSM component and its representation of land-atmosphere

interactions.

3 Methodology

Different metrics have been employed in the literature for the evaluation of land-atmosphere interactions within climate model

simulations and observations. Among these metrics, we selected the Vegetation-Atmosphere Coupling (VAC) index (Zscheis-130

chler et al., 2015) as our evaluation metric for the representation of land-atmosphere interactions at monthly scales. This index

has been previously employed in the literature to identify regions with episodes of strong land-atmosphere coupling within

climate model simulations and observational data (Zscheischler et al., 2015; Gevaert et al., 2018; Sippel et al., 2017; Li et al.,

2017; Philip et al., 2018). The VAC index is segregated in four categories based on the simultaneous occurrence of some given

extreme percentile rages of Surface Air Temperature (SAT) and latent heat flux (LH, Philip et al., 2018):135

V ACa if SAT < 30thPctl. and LH < 30thPctl.→Atmos. Control

V ACb if SAT > 70thPctl. and LH > 70thPctl.→Atmos. Control

V ACc if SAT > 70thPctl. and LH < 30thPctl.→ Land Control

V ACd if SAT < 30thPctl. and LH > 70thPctl.→ Land Control

0 otherwise

(1)

Extremes of SAT and LH are defined as values exceeding (below) the 70th (30th) percentile, relative to a 20-year period

(1980-2000) (Eq. 1). The 30th and 70th percentile thresholds were also employed in previous studies based on monthly data
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(Sippel et al., 2017). The VAC index classifies areas depending on the soil moisture regime into energy-limited areas, where

atmospheric forcing controls processes at the land surface (VACa and VACb), and transitional areas, where land surface pro-140

cesses are driven by soil moisture deficits (VACc and VACd). As explained in Zscheischler et al. (2015), the VACa category

is associated with low SAT caused by the presence of clouds and precipitation, which leads to low vegetation activity likely

rising soil moisture. The VACb category is frequent in wet areas with high SAT, usually related to clear sky and high radiation,

which is associated with the increase in vegetation activity inducing the depletion of soil moisture. During VACc episodes, the

combination of high SAT and soil moisture deficits leads to diminished vegetation activity, followed by low precipitation and145

consequently reduced soil moisture and high SAT, promoting heat waves and droughts. The VACd category is associated with

high precipitation over dry soils which stimulates vegetation activity, increases soil moisture and decreases SAT.

We calculate the frequency of occurrence for each VAC category using deseasonalized and detrended monthly SAT and

LH series following the typical methodology (Sippel et al., 2017) at each grid cell from 1980 to 2012, hereafter the analysis

period. The frequency of occurrence for each VAC category is calculated by counting the VAC events for the analysis period150

seasonally; in boreal winter (December, January, and February; DJF), in spring (March, April, and May; MAM), in summer

(June, July, and August; JJA), and in fall (September, October, and November; SON). The VAC frequencies of occurrence

for each category are considered significant when higher than the 95th percentile of the population obtained by 100 randomly

sorted 34-year time series of SAT and LH. For the study of land-atmosphere coupling within each simulation, we represent the

averaged frequency of events under atmospheric control (VACa and VACb) and under land control (VACc and VACd) at grid155

cells with significant frequency of occurrence for at least one of the two VAC categories.

After the evaluation of land-atmosphere interactions in our set of simulations, we assess the representation of extreme

events across the WRF simulations coupled to different LSM components. There are several definitions of indices related

to temperature and precipitation extremes, mainly using thresholds based on absolute values or statistical percentiles (e.g.

Sillmann et al., 2013a). The evaluation of model simulations in representing indices based on absolute values could include160

model-specific biases, that can be corrected by bias removal techniques. However, the advantage of applying bias removal

techniques techniques is not clear for the study of future climate trends and climate variability, since they have been proven

to modify the spatiotemporal consistency of climate models as well as internal feedback mechanisms and conservation terms

(Ehret et al., 2012; Cannon et al., 2015). Additionally, the simulation of absolute temperatures are of central importance

for temperature dependent processes that may have important consequences for society and ecosystems, such as soil carbon165

processes (Hicks Pries et al., 2017). Studies based on statistical percentiles improve the comparison among models but hamper

the interpretation of results by losing the physical meaning of the variable (temperature or precipitation). Since extreme indices

based on both absolute values and statistical thresholds present advantages and disadvantages, we selected a set of indices

including both categories from the list of 27 indices recommended by the Expert Team on Climate Change Detection and

Indices (ETCCDI, Karl et al., 1999, Table 2). Since we are interested in the climatology of extreme events, temporal averages170

of each annual index are computed for the analysis period at each grid cell for each WRF experiment. Then, we compute the

inter-model range of each index across the WRF simulations (i.e., the difference between the maximum and minimum values at
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Table 2. List of extreme indices used in this study defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) (Karl

et al., 1999). Percentiles are calculated over the period 1980-2000.

Index Definition Unit

Cold Event

Intensity

TXx DJF Maximum value of daily maximum temperature (hottest day) in winter ◦C

TNn DJF Minimum value of daily minimum temperature (coldest nigth) in winter ◦C

Frequency

TN10p Percentage of days in a year when daily minimum temperature

< the calendar day 10th percentile centered on a 5-day window %

TX10p Percentage of days in a year when daily maximum temperature

< the calendar day 10th percentile centered on a 5-day window %

Duration

CSDI Cold Spell Duration Index: annual count of days with at least 6 consecutive days when

daily minimum temperature < the calendar day 10th percentile centred on a 5-day window Days

Warm Event

Intensity

TXx JJA Maximum value of daily maximum temperature (hottest day) in summer ◦C

TNn JJA Minimum value of daily minimum temperature (coldest night) in summer ◦C

Frequency

TN90p Percentage of days in a year when daily minimum temperature

> the calendar day 90th percentile centered on a 5-day window %

TX90p Percentage of days in a year when daily maximum temperature

> the calendar day 90th percentile centered on a 5-day window %

Duration

WSDI Warm Spell Duration Index: annual count of days with at least 6 consecutive days when

daily maximum temperature > the calendar day 90th percentile centred on a 5-day window Days

Precipitation Event

Intensity

R95p Annual total precipitation when daily accumulated precipitation on a wet day

> 95th percentile of precipitation on wet days mm

Frequency

R10mm Annual count of days when daily accumulated precipitation ≥ 10mm Days

Duration

CDD Maximum length of dry spell: maximum annual number of consecutive days with daily

accumulated precipitation < 1mm Days

CWD Maximum length of wet spell: maximum annual number of consecutive days with daily

accumulated precipitation ≥ 1mm Days
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each grid cell considering the four WRF simulations), using it as metric for the uncertainty in the WRF simulation of extreme

events arising from the LSM component.

The LSM effect on the WRF simulation of extreme temperature and precipitation events was also compared with the repre-175

sentation of extreme events by three different RCMs participating in the North America CORDEX (NA CORDEX) program,

using daily data from three Evaluation simulations (Table S1). These CORDEX simulations were performed by the WRF

model (Skamarock et al., 2008), the RCA4 model (Samuelsson et al., 2011), and the CRCM-UQAM model (Martynov et al.,

2013), using boundary conditions from the ERA-Interim reanalysis (Dee et al., 2011). The spatial domain and resolution of

the NA CORDEX simulations are similar to that of the WRF simulations, as indicated in Section 2. Refer to Table S2 for180

information about the availability of the data employed in this work.

4 Results

4.1 Evaluation of land-atmosphere interactions in WRF simulations

All WRF simulations with different LSM components display similar spatial patterns for VAC categories, agreeing in the

seasonality and broadly in the areas with high probability of episodes when atmospheric forcing or soil conditions control185

processes at the land surface (Figures 1 and 2). Atmospheric forcing controls surface processes at middle and high latitudes

in MAM, JJA and SON, moving southward in DJF (Figure 1). Areas frequently driven by soil processes are displayed over

the western Mexican coast in DJF, spreading across low and middle latitudes in MAM, JJA and SON (Figure 2). Despite the

broad agreement between LSM simulations in the spatial distribution of the VAC categories, there are regional differences in

their representation of land-atmosphere coupling. These regional differences allow us to identify the NOAH LSM as the one190

simulating the weakest annual land control on processes at the surface, mainly due to a relatively weak land control during

MAM and JJA (Figure 2).

The areas where LSM simulations differ in the probability of episodes under atmospheric control (VACa and VACb) vary

with the season; for example the NOAH-MP LSM simulates a large area under atmospheric control over the southeastern US

in DJF, while the CLM4 and NOAH LSMs identify atmospheric control areas below the Great Lakes following a northwestern195

direction (Figure 1). In MAM, the NOAH-MP LSM represents higher probability of atmospheric control episodes over the

northern US in comparison with the CLM4 and NOAH simulations (Figure 1). The NOAH simulation shows the strongest

atmospheric control in JJA as compared with the remaining simulations, particularly over eastern and western regions of

Hudson Bay, the southeastern US and small areas in Mexico (Figure 1). During SON, the NOAH-MP LSM reaches the highest

probability of episodes under atmospheric control at middle and high latitudes. The contribution of the VACa and VACb200

categories to these episodes is broadly similar across LSMs, with slightly higher VACa in all seasons; modest LSM-specific

differences include a tendency for the NOAH simulation to show slightly higher VACa probabilities across all seasons (but

especially DJF) (Figures S1 and S2). LSM differences in the representation of VACa and VACb probabilities suggest the LSM

influence on the evolution of atmospheric conditions.

8

https://doi.org/10.5194/gmd-2020-86
Preprint. Discussion started: 20 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 1. Mean frequency of occurrence for VAC categories associated with atmospheric control (VACa and VACb) for each simulation

annually and seasonally; DJF, MAM, JJA and SON. Black dots in the maps indicate VAC values of at least one category larger than the 95th

percentile of the randomly generated series.
9
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Figure 2. Mean frequency of occurrence for VAC categories associated with land control (VACc and VACd) for each simulation annually

and seasonally; DJF, MAM, JJA and SON. Black dots in the maps indicate VAC values of at least one category larger than the 95th percentile

of the randomly generated series.
10
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Although the NOAH simulation displays the weakest land control for all seasons, it shows regions under land control over205

northwestern North America in DJF also indicated by the CLM4 simulation, but absent in the NOAH-MP and NOAH-MP-

DV simulations (Figure 2). The probability of land control episodes over the western Mexican coast is higher in the CLM4

and NOAH-MP simulations than in the NOAH and NOAH-MP-DV simulations in DJF. In JJA, however, the NOAH-MP-DV

simulation presents a stronger land control at low and middle latitudes than the NOAH-MP simulation (Figure 2). There are

also regional differences between LSM simulations in SON, particularly over the southeastern US coast where the CLM4210

shows the strongest land control, followed by the NOAH-MP simulation (Figure 2). Exploring the contribution of respective

VACc and VACd separately, it is shown they present small differences; for example, the VACc probability in DJF is slightly

higher than the VACd probability for all simulations, showing the opposite behavior in JJA for the NOAH-MP and the NOAH-

MP-DV simulations (Figures S3 and S4). The LSM differences shown in the representation of land control VAC categories

likely imply LSM differences in the simulated statistic of extreme events because of the relationship between VACc episodes215

and heat waves and droughts (Zscheischler et al., 2015).

4.2 Climatologies of temperature and precipitation extremes in WRF simulations

The climatologies of temperature and precipitation extremes for the analysis period, represented by their means, show similar

spatial patterns across all WRF simulations with different LSM component (Figures S5, S6 and S7). Figure 3 represents the

simulated climatologies of all extreme indices for the ensemble mean, formed by all WRF simulations. The WRF ensemble220

mean shows the most intense cold events at high latitudes and high elevations, with cold events being more frequent and longer

over northwestern North America and over Mexico (Figure 3a). The simulation of warm events is more intense in coastal

areas of the US and Mexico and over the central US, being more frequent and longer over southern North America with a

high percentage of hot nights over northeastern NA (Figure 3b). Precipitation events are heavier and more frequent at higher

elevations and over southeastern NA (Figure 3c). The longest dry periods are simulated over the western Mexican and US225

coasts, reaching more than 80 consecutive dry days, while the longest wet periods are represented over the Rockies and the

northwestern Mexican coast (Figure 3c).

Figure 4 summarizes the averaged climatology of each extreme index for each simulation. Averages are computed over six

regions adapted from Giorgi and Francisco (2000): Central America, CAM; Western North America, WNA; Central North

America, CNA; Eastern North America, ENA; Alaska, ALA; and Greenland, GRL. Colors in the figure correspond to the230

hottest (red) and coldest (blue) index values among the WRF simulations for the representation of cold and warm temperature

extremes, and to the driest (brown) and wettest (green) index values for the representation of precipitation extremes over each

region. This approach helps us to identify the CLM4 simulation as that with the weakest and shortest cold extreme events,

although simulating more frequent cold events than the rest of LSM components (Figure 4a). Meanwhile, the NOAH-MP-

DV simulation shows more intense cold extremes during shorter periods over most of the regions (CAM, CNA, ENA and235

ALA) in comparison with the NOAH-MP simulation which uses prescribed vegetation (Figure 4a). The CLM4 simulation

also corresponds to the most intense representation of warm extremes for the index based on maximum temperatures, while

the intensity index based on minimum temperatures shows higher values in the NOAH-MP simulation, except for the CAM
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Figure 3. Climatology of extreme indices associated with cold temperature events (a), warm temperature events (b), and precipitation events

(c) for the WRF ensemble mean (Table 2). The climatology of each index is estimated as the mean of each extreme index at each grid cell

for the analysis period (1980-2012).
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Figure 4. Comparison of the simulated climatologies of temperature and precipitation extreme indices included in Table 2 among the WRF

simulations averaging over six land North American regions adapted from Giorgi and Francisco (2000) (Central America, CAM; Western

North America, WNA; Central North America, CNA; Eastern North America, ENA; Alaska, ALA; and Greenland, GRL). Mean values of

each index over each region are sorted, identifying the warmest (red) and coldest (blue) simulations for the indices associated with cold (a)

and warm (b) temperature events as well as identifying the driest (brown) and wettest (green) simulations for the indices associated with

precipitation events (c).
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region (Figure 4b). The NOAH simulation is associated with the weakest and shortest warm extremes over most areas, and

the NOAH-MP and NOAH-MP-DV simulations with the most frequent and longest events. The effect of dynamic vegetation240

seems to weaken hot extremes at nights over all regions, making them longer at middle and high latitudes (CNA, ENA,

ALA and GRL), except in the western US (Figure 4b). For precipitation extreme events, the CLM4 simulation shows the most

intense and frequent precipitation events over most areas, while the NOAH simulation shows the weakest and the least frequent

precipitation events (Figure 4c). The NOAH-MP simulation produces the longest dry periods over all regions except at high

latitudes, where the NOAH-MP-DV simulation yields a higher number of consecutive dry days (Figure 4c). The simulation245

with dynamic vegetation yields wetter results than the simulation with prescribed vegetation at middle and low latitudes, while

at high latitudes the NOAH-MP-DV simulation is generally drier than the NOAH-MP simulation (Figure 4c).

In summary, although all simulations represent a similar spatial pattern of the climatology of extreme indices, each LSM

simulation produces different values for temperature and precipitation extreme events. Thus, the CLM4 LSM is identified

as the component yielding the highest temperatures during cold and warm events over most of North America as well as250

the heaviest and most frequent precipitation extremes over most locations. Meanwhile, the NOAH LSM produces one of the

weakest climatologies for all temperature and precipitation extreme indices over most regions.

4.3 LSM uncertainty in the simulation of temperature and precipitation extremes

Although all WRF simulations show similar spatial patterns for temperature and precipitation extreme indices (Figures S5,

S6 and S7), there are large uncertainties in the climatology of each extreme index associated with the use of different LSM255

components. For the simulation of the intensity of cold events, the multi-model range across the WRF simulations for the hottest

day in DJF (TXx DJF) shows large values over the boreal forest and the Rockies, where the index climatology is close to 0oC

(Figures 3 and 5a). The representation of the coldest night in DJF (TNn DJF) shows large LSM dependency, yielding ranges

up to 12 ◦C over the US and a spatial average of 4 ◦C, displaying large uncertainties over areas where the index climatology

approaches to 0oC (Figures 3 and 5a). The simulated intensity of warm temperature events, measured by the temporal average260

of the hottest day in summer (TXx JJA), differs up to 10 ◦C among simulations over eastern North America, with a spatial

average of 3.5 ◦C (Figure 5a). The simulation of the mean coldest night in summer (TNn JJA) varies across simulations from 2

to 3 ◦C over the whole domain, except in the Arctic where the range across simulations reaches approximately 15 ◦C and the

index value yields negative temperatures for some simulations (Figure 3 and 5a). The frequency of warm extreme temperature

events varies among simulations; the range for the number of hot days (TX90p, based on maximum temperatures) is up to 4.2%265

over the US with a spatial average of 0.97% over the whole domain, and the range for the number of hot nights (TN90p, based

on minimum temperatures) reaches values up to 3.8% at low latitudes with a spatial average of approx. 0.7% (Figure 5b). Large

values of the multi-model range for the TX90p index approximately coincide with the largest index values (Figures 3 and 5b).

Note that ranges of more than 2% in the number of hot days and nights correspond to differences of more than 7 days per year

in the index climatology simulated by different LSMs. Ranges of indices related to the frequency of cold events show smaller270

values than those for warm temperature events, displaying no clear spatial pattern with averages of ∼ 0.5% (i.e. 1.8 days per

year) for the number of cold days and nights (TX10p and TN10p; Figure 5b). The duration of warm spells is greatly affected
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by the choice of the LSM component, while its effect is weaker on the simulated duration of cold events (Figure 5c). The range

of the duration of warm spells across simulations yields values of more than 10 days over Mexico and over broad areas of the

central and southern US, with a spatial average of 2.8 days (Figure 5c). Otherwise, the LSM effect on the simulated duration275

of cold spells is weaker, reaching differences of about 6 days among simulations in central Canada with a spatial average of

1.3 days (Figure 5c). For both indices, the LSM differences are larger where the duration indices display larger values (Figure

3 and 5c).

The simulated climatology of the intensity of extreme precipitation events is also strongly affected by the choice of LSM,

with the R95p index reaching LSM differences larger than 100 mm at low latitudes and over the eastern US with a spatial280

average of 39 mm (Figure 6a). The frequency of heavy precipitation events varies among simulations in about 35 days per

year at some locations in Mexico and the US, with a spatially averaged range of 3.5 days per year (Figure 6b). The areas

with the largest inter-model range of the precipitation frequency index across simulations are located in Mexico, the Rockies

and at some grid cells over the eastern US coast (Figure 6b). The simulation of the number of consecutive dry and wet days

also depends on the choice of the LSM component, presenting larger differences among simulations in the climatology of the285

consecutive dry days index than in the climatology of the consecutive wet days index (Figure 6c). The inter-model range across

LSM simulations reaches 37 days for the number of consecutive dry days over central and southwestern North America, with

a spatial average of 4 days per year (Figure 6c). Meanwhile, the simulated number of consecutive wet days also shows LSM

differences of more than 20 days at a few grid cells, but lower values over most of the domain, yielding a spatial average of

∼ 1.2 days (Figure 6c). Large inter-model ranges of precipitation indices across WRF simulations coincide with areas where290

each index reaches the maximum values (Figure 3 and 6).

Results for the VAC metric present some similarities with the spatial pattern of uncertainties in the WRF simulation of

temperature and precipitation extreme events. We estimate the seasonal component of each index to compare with the metrics

of land-atmosphere coupling seasonally, except for the temperature intensity indices which are defined in JJA and DJF (Figures

S8, S9, and S10). The areas showing large uncertainty in the simulation of the intensity indices of cold extremes coincide with295

areas where LSM simulations differ in the representation of DJF atmospheric control VAC categories (VACa and VACb; Figures

1 and 5). The seasonal components of the inter-model range for the simulated percentage of cold days and nights show small

uncertainty in winter with very noisy fields (Figure S8). However, the seasonal decomposition of the range for the duration

index of cold events shows a region with large uncertainty over western NA in MAM, corresponding to an area with marked

differences between LSM simulations in the MAM atmospheric control VAC categories (Figures S8c and 1). For the simulation300

of warm extremes, large LSM differences in the intensity indices correspond to LSM differences in the JJA VAC categories

associated with atmospheric control episodes (Figures 1 and 5). Areas with large uncertainty in the JJA simulation of warm

frequency indices coincide with areas showing strong land control on surface processes as well as regional differences between

LSM simulations (Figures S9ab and 2). The duration index of warm extremes also shows large inter-model range in JJA over

regions under land control (Figures S9c and 2). The range of the intensity index of precipitation extremes displays a large JJA305

component over areas under land control at low latitudes and under atmospheric control at middle and high latitudes (Figures

S10a, 1 and 2). The MAM and SON components of the range for the precipitation intensity index also show large values over
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Figure 5. Multi-model ranges across the WRF simulations (i.e., difference between the highest value and the lowest value of the simulation

ensemble at each grid cell) of extreme indices associated with the intensity (a), frequency (b), and duration (c) of cold (left) and warm (right)

extreme temperature events (Table 2). The range among simulations is computed using the mean of each index from 1980 to 2012 for each

simulation.
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Figure 6. As in Figure 5 but for extreme precipitation events.
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areas with atmospheric control in MAM and over areas with land control in SON (Figures S10a, 1 and 2). The frequency index

of precipitation events presents large inter-model range over small regions in JJA, coinciding with areas under atmospheric

control (Figures S10b and 1). The inter-model range of dry periods coincides with land control areas at low latitudes in all310

seasons and with atmospheric control areas at high latitudes in MAM (Figures S10c 1 and 2). The inter-model range in the

simulation of consecutive wet days is large in JJA over a small Mexican region classified under atmospheric control with

different degree of coupling between simulations (Figures S10d and 1).

In order to address the LSM influence on the simulation of extreme events, we compute the ranges among WRF simulations

using the 95th percentile of the analysis period for each extreme index. The uncertainty in the WRF simulations due to the315

LSM component when using the 95th percentile for each extreme index leads to similar conclusions (Figures S11 and S12).

The LSM differences using the 95th percentile of the analysis period are larger for all extreme temperature and precipitation

indices than using the period mean as expected, but the marked areas are analogous (Figures 5, 6, S11 and S12). The agreement

in the representation of areas with large uncertainty in extreme indices between results using mean and extreme climatologies

suggests the LSM influence on extreme events at climatological and shorter time scales.320

4.4 Comparison between WRF simulations and three CORDEX Evaluation simulations

The climatologies of temperature and precipitation extreme statistics as simulated by the RCMs participating in the NA-

CORDEX project (Table S1) show similar spatial patterns to those from the WRF ensemble (Figures S5-S7 and S13-S15).

Although spatial patterns are similar in both ensembles, the WRF simulations yield colder minimum temperatures in DJF

(TNn DJF) and less frequent cold nights (TX10p) than the CORDEX simulations (Figures S5 and S13). The percentage of hot325

days, however, is higher and warm spells are longer in the WRF simulations than in the CORDEX simulations, particularly

over southwestern NA (Figures S6 and S14). The intensity of heavy precipitation extremes is generally higher within the WRF

ensemble than in the CORDEX ensemble, while dry periods are longer in the CORDEX simulations (Figures S7 and S15).

The uncertainties in the simulation of extreme statistics within the CORDEX ensemble show some similarities with the

WRF uncertainties arising from the LSM component. For example, the simulated climatology of DJF coldest night (TNn330

DJF) shows large uncertainties over the US for both ensembles, particularly over the eastern US (Figures 5a and 7a). The

climatologies of DJF hottest day (TXx DJF) display large inter-model range within the WRF ensemble over areas where

temperatures approximate to 0oC, expanding southward for the CORDEX ensemble. The CORDEX inter-model ranges of

the frequency indices for cold extremes do not show a clear spatial pattern in agreement with the WRF ensemble. There is,

however, a region over the central US with slightly larger ranges among the CORDEX simulations than among the WRF335

simulations (Figures 5b, 7b, and S16b). The duration of cold spells presents large uncertainties in the CORDEX ensemble

over the eastern US/Mexican border and over western Canada, coinciding with a small region with large inter-model range

among the WRF simulations (Figures 5c and 7c). For the simulation of warm temperature extremes, the uncertainties in the

intensity indices among the CORDEX simulations show large ranges over the eastern US for the JJA hottest day (TXx JJA)

in agreement with the WRF simulations, and at high latitudes for the coldest night (TNn JJA), including the eastern region340

of Hudson Bay also marked by the WRF ensemble (Figures 5a and 7a). The frequency indices of warm events show large
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Figure 7. Inter-model range across three CORDEX simulations (i.e., difference between the highest value and the lowest value of the

CORDEX ensemble at each grid cell) of extreme indices associated with intensity (a), frequency (b), and duration (c) of cold and warm

extreme temperature events (Table 2). The range across simulations is computed using the mean of each index from 1980 to 2012 for each

simulation.
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Figure 8. As in Figure 7 but for extreme precipitation events.
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inter-model range across the CORDEX simulations over the central US, also shown in the WRF simulations for the TX90p

index (Figures 5b and 7b). The uncertainty in the duration of warm spells among the CORDEX simulations does not show

large spatial differences, although the ranges are slightly larger at low latitudes coinciding with regions marked by the WRF

ensemble and at very high latitudes (Figures 5c and 7c). The simulation of precipitation extreme statistics is generally more345

uncertain across the CORDEX simulations than across the WRF simulations (Figures 6, 8, and S17). Interestingly, all regions

with large uncertainties in the simulation of precipitation extremes among the WRF simulations are also identified as areas with

large uncertainty across the CORDEX ensemble. There are, however, additional areas with large uncertainty in the CORDEX

ensemble, particularly for the consecutive dry days index and the frequency index at middle and high latitudes (Figures 6 and

8). Thus, the comparison between the WRF and CORDEX ensembles suggests that results from this study may be applicable350

to other model ensembles over some areas, particularly for the simulation of warm temperature and precipitation extremes.

5 Discussion

5.1 Comparison of inter-model ranges across the WRF and CORDEX ensembles

In order to provide context for the applicability of these results to other model ensembles, we compared the inter-model range

across the WRF simulations with the inter-model range across three CORDEX simulations in representing extreme events355

(Figures 5-8). Since CORDEX simulations were performed by three structurally different RCMs (the WRF, the RCA4, and

the CRCM-UQAM models), we expected a broader inter-model range of the simulated extreme indices across CORDEX

simulations. Differences in the representation of extreme events among the CORDEX simulations arise from several factors,

such as different atmospheric and ocean parameterizations, land surface model components, the representation of land cover,

treatment of boundary conditions and the application of nudging techniques. In addition to all these factors, internal variability360

may be another important component for the inter-model range of the simulated extreme events. However, previous analyses

have showed that the spread of extreme events among ensemble members of an individual model is generally small compared

to inter-model spreads (Kharin et al., 2007; Sillmann et al., 2013a).

Although CORDEX simulations were performed using boundary conditions from the ERA reanalysis product, the com-

parison with the WRF simulations is possible because we compute inter-model ranges across ensembles as a measure of the365

uncertainty in each model ensemble. Thus, we compare model’s uncertainty in both ensembles finding common areas with

large inter-model ranges for the simulation of cold and warm temperature extremes and precipitation extremes, despite they

used different products as boundary conditions. The similar uncertainties of extreme events in the CORDEX ensemble relative

to the WRF simulations suggest that the LSM component may be an important source of uncertainty in the CORDEX ensemble.

That is, the LSM component employed in each CORDEX simulation (Table S1) may be simulating different land-atmosphere370

interactions and affecting the simulation of extreme events over those regions.

Despite there being more sources of uncertainty in the CORDEX simulations than across the WRF simulations, the com-

parison between these ensembles displays larger inter-model ranges across the WRF simulations than across the CORDEX

ensemble over certain areas and for certain extreme indices (Figures S16 and S17). This suggests the possible existence of bias
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compensation inside the CORDEX simulations. Moreover, each RCM may have a different sensitivity to the employed LSM375

component as well as to other components and parameterizations. Additional sensitivity studies using the WRF model or an-

other climate model with different settings and parameterizations may help to discern other important sources of uncertainties

in the simulation of extreme events, such as horizontal resolution.

5.2 Climatology of extreme events as represented by the WRF simulations and by the CMIP5 simulations

Sillmann et al. (2013a) presented an evaluation of the CMIP5 models in simulating some of the extreme indices defined by380

ETCCDI; this information was used in the Intergovernmental Panel on Climate Change (IPCC) chapter on models’ evaluation

(Flato et al., 2013). The analysis period employed by Sillmann et al. (2013a), 1981-2000, differs from the one used in this

analysis, but a rough comparison can be done between our results and theirs for some extreme indices. For example, the

spatial patterns of DJF coldest night and JJA hottest day are similar for the WRF and CMIP5 ensemble means (Figure 3 and

Figure 2 in Sillmann et al. 2013a). Sillmann et al. (2013a) also provides regional averages over six NA regions, adapted from385

Giorgi and Francisco (2000). These spatial averages allow identification of some regional differences between the WRF and

the CMIP5 ensembles, for example over the eastern US coast (ENA region) where the WRF simulations yield warmer JJA

maximum temperatures than the CMIP5 ensemble (Figure 4 and Figure 3 in Sillmann et al. 2013a). The spatial patterns of the

WRF and CMIP5 ensembles for CSDI and WSDI indices are also similar, although the WRF ensemble reaches longer cold

and warm events (Figure 3 and Figures S6-S7 in Sillmann et al. 2013a). The representation of the intensity index for heavy390

precipitation events (R95p) also shows similar spatial patterns between both ensemble means, although the WRF ensemble is

generally more intense over most regions (Figures 3 and 4, and Figures 6 and 7 in Sillmann et al. 2013a). Similar results are

found for the simulation of consecutive dry days, showing similar spatial patterns with some regional differences especially at

low latitudes (CAM region, Figures 3 and 4, and Figures 6 and 7 in Sillmann et al. 2013a). The variability across the CMIP5

ensemble for the simulation of precipitation indices seems to be particularly large at low latitudes (CAM region) similar to395

WRF uncertainty in the representation of precipitation extremes associated with the LSM component (Figure 6, and Figure 7

in Sillmann et al. 2013a). Although this is a rough comparison between results presented in this article and in Sillmann et al.

(2013a), this comparison suggests that our conclusions could be also applicable to the CMIP5 ensemble as it was the case for

the CORDEX ensemble.

5.3 Implications of these results400

Increases in heat-related events have been directly and robustly associated with increases in mortality, for example in Europe

during the heatwave of 2003 (Fischer et al., 2007) or in India (Mazdiyasni et al., 2017). Heavy precipitation events often lead to

floods, which also are directly associated to economic loss and death toll (Hu et al., 2018). All climate change projections point

out to a future increase in temperature and precipitation extreme events (Sillmann et al., 2013b), thus developing mitigation

strategies will become necessary to preserve human health. Climate model simulations are our best source of information to405

inform measure against climate change impacts. However, the results presented here indicate that the simulation of several

extreme indices varies largely depending on the employed LSM component. This means that a climate model may simulate the
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climatology of heat extremes 5oC warmer and 6 days longer depending on the employed LSM component, and similarly for

cold extremes and heavy precipitation events. The accuracy of climate models in simulating extreme events will likely affect

climate change policy, therefore having repercussions for society and environment.410

The indices employed here to study the climatology of extreme temperature events were based on minimum and maximum

temperature outputs. However, many studies have proven that the study of compound events using indices based on multiple

variables, such as temperature and moisture outputs, are more representative of thermal stress in humans and ecosystems

than standard indices (Zscheischler et al., 2018). The large LSM influence on the climatology of extreme temperature and

precipitation events, suggests that the uncertainty arising from the LSM component could be higher on extreme indices based415

on multiple variables. However, the analysis of the LSM influence on compound events is beyond the scope of this work, and

constitutes an interesting line for future research.

6 Conclusions

WRF simulations coupled to different LSM components showed similar spatial patterns of land-atmosphere interactions, in-

dicative of atmospheric control over surface conditions at middle and high latitudes and land surface control over lower lat-420

itudes, particularly in JJA. However, the simulation of land-atmosphere interactions differs at regional scales depending on

the LSM choice in two directions; by altering land control on surface processes (VACc and VACd categories) and by altering

atmospheric forcing and its influence on surface conditions (VACa and VACb categories). Thus, the NOAH LSM is associated

with the weakest representation of land control on surface conditions, while the CLM4 LSM simulates one of the strongest land

effect on surface conditions. The use of different LSM components leads to large ranges of represented extreme temperature425

and precipitation events, affecting their simulation in intensity, frequency and duration. The CLM4 LSM yields the weakest

cold events, the warmest hot days, and the heaviest precipitation events, while the NOAH simulation yields the weakest land

control on surface conditions, the weakest warm temperature events and the weakest heavy precipitation events. This relation-

ship between the degree of land control on surface conditions and the intensity of extreme events is in agreement with two case

studies during the Russian 2010 heat wave and the Amazon 2010 drought (Zscheischler et al., 2015). Meanwhile, the NOAH-430

MP LSM produces the driest simulation, yielding slightly wetter conditions when using dynamic vegetation at middle and low

latitudes. Despite small differences between simulations with prescribed and dynamic vegetation, differences are much more

marked among the WRF simulations due to different LSM components.

Previous studies using GCM simulations suggested a dependence of the simulated land-atmosphere interactions on the em-

ployed LSM component with possible consequences for the simulation of extreme events (García-García et al., 2019). Results435

from four WRF simulations differing only in the LSM component support that hypothesis. Additionally, areas with large

uncertainties in the simulation of temperature and precipitation extremes across the WRF simulations due to different LSM

components appear in the NA-CORDEX model ensemble, which indicates the possible LSM influence on the simulation of

extreme events within other model ensembles. This work reinforces the important role of the LSM component in climate sim-

ulations, supporting the urgency of on-going research focused on improving this model component and their implementation440
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in regional and global climate models as well as in reanalysis products. The strong LSM dependency of climate model sim-

ulation of extremes is also of special importance for international reports focused on land, such as the IPCC Special Report

on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas

fluxes in Terrestrial Ecosystems (Arneth, 2019). Future sensitivity analyses to the LSM component using different regional and

global climate models would be useful to understand models’ differences in simulating temperature and precipitation extremes,445

helping to narrow the inter-model range across reanalyses and climate model projections in simulating extreme events.
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